Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 312
Filtrar
1.
J Vasc Res ; 61(2): 89-98, 2024.
Artigo em Francês | MEDLINE | ID: mdl-38368869

RESUMO

INTRODUCTION: Vascular prosthetic grafts are widely used in vascular surgery; however, graft infection remains a major concern. Silver-coated vascular grafts have demonstrated anti-infection properties in clinical settings; however, whether the silver irons influence foreign body reaction or neointimal hyperplasia remains unclear. METHODS: Sodium alginate and hyaluronic acid (SA/HA) hydrogel patches loaded with rhodamine, with or without silver, were fabricated. Patches were implanted in the subcutaneous or abdominal cavity and inferior vena cava of rats. Samples were harvested on day 14 and examined via immunohistochemical and immunofluorescence analyses. RESULTS: Silver hydrogel was found to decrease the foreign body reaction; after subcutaneous and abdominal cavity implantation in rats, the capsule was found to be thinner in the silver hydrogel group than in the control hydrogel group. The silver hydrogel group had fewer CD68-positive cells and proliferating cell nuclear antigen and interleukin-33 (IL-33) dual-positive cells than the control hydrogel group. Additionally, the silver hydrogel patch reduced the neointimal thickness after patch venoplasty in rats, and the number of IL-33- and IL-1ß-positive cells was lower than that in the control patch. CONCLUSION: Silver-loaded SA/HA hydrogel patches decreased the foreign body reaction and venous neointimal hyperplasia in rats by the inhibition of IL-33 expression.


Assuntos
Interleucina-33 , Prata , Ratos , Animais , Hiperplasia , Neointima , Reação a Corpo Estranho/etiologia , Reação a Corpo Estranho/prevenção & controle , Hidrogéis
2.
Biomater Sci ; 12(2): 468-478, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38086632

RESUMO

Foreign body response (FBR) represents an immune-mediated cascade reaction capable of inducing the rejection of foreign implants, thereby compromising their in vivo performance. Pure zwitterionic hydrogels have demonstrated the ability to resist long-term FBR, owing to their outstanding antifouling capabilities. However, achieving such a robust anti-FBR effect necessitates stringent requirements concerning the purity of zwitterionic materials, which constrains their broader functional applications. Herein, we present a biocompatible, controllably degradable, and functionalizable zwitterion-albumin hybrid hydrogel. The zwitterionic hydrogel crosslinked with serum albumin exhibits controllable degradation and excels in preventing the adsorption of various proteins and adhesion of cells and bacteria. Moreover, the hydrogel significantly alleviates the host's FBR compared with PEG hydrogels and particularly outperforms PEG-based cross-linker crosslinked zwitterionic hydrogels in reducing collagen encapsulation when subcutaneously implanted into mice. The zwitterion-albumin hybrid hydrogel shows potential as a functionalizable anti-FBR material in the context of implantable materials and biomedical devices.


Assuntos
Reação a Corpo Estranho , Hidrogéis , Camundongos , Animais , Hidrogéis/farmacologia , Reação a Corpo Estranho/prevenção & controle , Materiais Biocompatíveis , Colágeno , Albuminas , Fibrose
3.
Molecules ; 27(10)2022 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-35630604

RESUMO

Invasive intraneural electrodes can control advanced neural-interfaced prostheses in human amputees. Nevertheless, in chronic implants, the progressive formation of a fibrotic capsule can gradually isolate the electrode surface from the surrounding tissue leading to loss of functionality. This is due to a nonspecific inflammatory response called foreign-body reaction (FBR). The commonly used poly(ethylene glycol) (PEG)-based low-fouling coatings of implantable devices can be easily encapsulated and are susceptible to oxidative damage in long-term in vivo applications. Recently, sulfobetaine-based zwitterionic hydrogels have emerged as an important class of robust ultra-low fouling biomaterials, holding great potential to mitigate FBR. The aim of this proof-of-principle in vitro work was to assess whether the organic zwitterionic-poly(sulfobetaine methacrylate) [poly(SBMA)]-hydrogel could be a suitable coating for Polyimide (PI)-based intraneural electrodes to reduce FBR. We first synthesized and analyzed the hydrogel through a mechanical characterization (i.e., Young's modulus). Then, we demonstrated reduced adhesion and activation of fibrogenic and pro-inflammatory cells (i.e., human myofibroblasts and macrophages) on the hydrogel compared with PEG-coated and polystyrene surfaces using cell viability assays, confocal fluorescence microscopy and high-content analysis of oxidative stress production. Interestingly, we successfully coated PI surfaces with a thin film of the hydrogel through covalent bond and demonstrated its high hydrophilicity via water contact angle measurement. Importantly, we showed the long-term release of an anti-fibrotic drug (i.e., Everolimus) from the hydrogel. Because of the low stiffness, biocompatibility, high hydration and ultra-low fouling characteristics, our zwitterionic hydrogel could be envisioned as long-term diffusion-based delivery system for slow and controlled anti-inflammatory and anti-fibrotic drug release in vivo.


Assuntos
Reação a Corpo Estranho , Hidrogéis , Eletrodos , Reação a Corpo Estranho/prevenção & controle , Humanos , Hidrogéis/química , Metacrilatos/química , Polietilenoglicóis/química
4.
Biomaterials ; 286: 121586, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35635896

RESUMO

Inflammation-driven foreign body reactions, and the frequently associated encapsulation by fibrogenic fibroblasts, reduce the functionality and longevity of implanted medical devices and materials. Anti-inflammatory drugs, such as dexamethasone, can suppress the foreign body reaction for a few days post-surgery, but lasting drug delivery strategies for long-term implanted materials remain an unmet need. We here establish a thin-coating strategy with novel low molecular weight corticosteroid dimers to suppress foreign body reactions and fibrotic encapsulation of subcutaneous silicone implants. The dimer coatings are >75% dexamethasone by mass and directly processable into conformal coatings using conventional solvent-based techniques, such as casting or spray coating without added polymers or binding agents. In vitro, surface erosion of the coating, and subsequent hydrolysis, provide controlled release of free dexamethasone. In a rat subcutaneous implantation model, the resulting slow and sustained release profile of dexamethasone is effective at reducing the number and activation of pro-fibrotic macrophages both acutely and at chronic time points. Consequently, fibroblast activation, collagen deposition and fibrotic encapsulation are suppressed at least 45 days post-implantation. Thus, our approach to protect implants from host rejection is advantageous over polymeric drug delivery systems, which typically have low drug loading capacity (<30%), initial burst release profiles, and unpredictable release kinetics.


Assuntos
Polímeros , Próteses e Implantes , Corticosteroides , Animais , Preparações de Ação Retardada , Dexametasona/química , Fibrose , Reação a Corpo Estranho/prevenção & controle , Peso Molecular , Ratos
5.
ACS Appl Bio Mater ; 5(4): 1501-1507, 2022 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-35297594

RESUMO

Background: The inflammatory reaction of sutures and oozing after arterial closure depends on the suture material and the amount of oozing surrounding the sutures. Anti-inflammation coatings have been proven to be an effective strategy to decrease this reaction. The aim of this study was to establish an arterial closure oozing model in rats and to test the effect of poly (lactic-co-glycolic acid) (PLGA) nanoparticle (NP) rapamycin- or necrostatin-1(NEC-1)-coated sutures on the inflammatory reaction after arterial closure. Methods and Materials: A 10 mm arteriotomy was carried out on the carotid artery of Sprague-Dawley rats and closed using 11-0 sutures. PLGA NP-rapamycin and NEC-1 were made. The 11/0 nylon sutures were coated with PLGA NP-rapamycin and NEC-1. Sutures were examined by scanning electron microscopy, hemolysis test, and cumulative release. The carotid arteriotomy was closed using uncoated PLGA NP-rapamycin- and NP-NEC-1-coated sutures. The carotid artery was harvested on day 7. Tissues were examined by histology and immunohistochemistry. Results: There were severe inflammatory reactions in the oozing arteries compared to the normal healing arteries (P = 0.0192). PLGA NP-rapamycin- and NEC -1-coated sutures reduced foreign body reaction compared to the uncoated sutures. There were significantly smaller number of CD3 (P = 0.0068), CD45 (P = 0.0300), and CD68 (P = 0.0011) cells in the PLGA NP-rapamycin- and NP-NEC-1-coated groups compared to the uncoated group. There was a smaller number of p-mTOR (P = 0.0198)-positive cells in the PLGA NP-rapamycin-coated group compared to the uncoated group. There was a smaller number of TNFα (P = 0.0198)-positive cells in the PLGA NP-NEC-1-coated group compared to the uncoated group. Conclusions: In this rat carotid artery oozing model, PLGA NP-rapamycin- or NP-NEC-1-coated sutures can inhibit inflammatory reaction and foreign body reaction. Although this was a small rodent animal experiment, this coated suture may have a potential clinical application in the future.


Assuntos
Nanopartículas , Sirolimo , Animais , Artérias , Reação a Corpo Estranho/prevenção & controle , Imidazóis , Indóis , Inflamação , Ratos , Ratos Sprague-Dawley , Sirolimo/farmacologia , Suturas
6.
J Control Release ; 341: 487-497, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34856228

RESUMO

Implantable insulin infusion systems using the intra-peritoneal route have dramatically changed the management of diabetes paving the way toward the realization of the potential "holy grail" of a fully implantable artificial pancreas. However, the wear duration of delivery catheters is compromised by the foreign body-mediated immune response. Both occlusion material present at the distal catheter tip end and fibrotic encapsulation surrounding the catheters influence the controlled and precise delivery of insulin, which eventually leads to the need for surgical intervention. The novel part of the current work is the investigation of the roles of implant physical properties (catheter size and tip configuration), as well as local inflammation control (through utilization of an anti-inflammatory agent) on the host fibrotic response using a previously developed animal model. The cellular and molecular response, the medication delivery efficacy as well as the ability to flush the catheters were examined and further compared among the different mitigation strategies. Reduction in catheter size as well as tuning the tip configuration from a cone shape to a round shape showed delayed host recognition and delayed propagation of the fibrotic response. However, the round shaped tips had an increased occurrence of lumen occlusion as a result of flow change. It became apparent that changing the physical properties of the catheters was not a long-term solution to catheter obstructions caused by the foreign body reaction. In comparison, control of the local inflammatory response through the use of an anti-inflammatory agent demonstrated a promising strategy for maintenance of catheter functionality without any type of obstructions. These finding will have a large impact toward the development of long-term use catheters for continuous intraperitoneal insulin infusion.


Assuntos
Diabetes Mellitus Tipo 1 , Insulina , Animais , Cateteres de Demora , Diabetes Mellitus Tipo 1/tratamento farmacológico , Reação a Corpo Estranho/tratamento farmacológico , Reação a Corpo Estranho/prevenção & controle , Sistemas de Infusão de Insulina
7.
Nat Commun ; 12(1): 5327, 2021 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-34493717

RESUMO

Implantation-caused foreign-body response (FBR) is a commonly encountered issue and can result in failure of implants. The high L-serine content in low immunogenic silk sericin, and the high D-serine content as a neurotransmitter together inspire us to prepare poly-DL-serine (PSer) materials in mitigating the FBR. Here we report highly water soluble, biocompatible and easily accessible PSer hydrogels that cause negligible inflammatory response after subcutaneous implantation in mice for 1 week and 2 weeks. No obvious collagen capsulation is found surrounding the PSer hydrogels after 4 weeks, 3 months and 7 months post implantation. Histological analysis on inflammatory cytokines and RNA-seq assay both indicate that PSer hydrogels show low FBR, comparable to the Mock group. The anti-FBR performance of PSer hydrogels at all time points surpass the poly(ethyleneglycol) hydrogels that is widely utilized as bio-inert materials, implying the potent and wide application of PSer materials in implantable biomaterials and biomedical devices.


Assuntos
Materiais Biocompatíveis/farmacologia , Reação a Corpo Estranho/prevenção & controle , Peptídeos/farmacologia , Próteses e Implantes , Animais , Materiais Biocompatíveis/síntese química , Citocinas/antagonistas & inibidores , Citocinas/biossíntese , Citocinas/imunologia , Reação a Corpo Estranho/imunologia , Hidrogéis , Infusões Subcutâneas , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Peptídeos/síntese química , Polietilenoglicóis/farmacologia , Solubilidade , Água/química
8.
Nat Rev Urol ; 18(12): 725-738, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34545239

RESUMO

Polypropylene (PPL) mesh is widely used in pelvic floor reconstructive surgery for prolapse and stress urinary incontinence. However, some women, particularly those treated using transvaginal PPL mesh placement for prolapse, experience intractable pain and mesh exposure or extrusion. Explanted tissue from patients with complications following transvaginal implantation of mesh is typified by a dense fibrous capsule with an immune cell-rich infiltrate, suggesting that the host immune response has a role in transvaginal PPL mesh complications through the separate contributions of the host (patient), the biological niche within which the material is implanted and biomaterial properties of the mesh. This immune response might be strongly influenced by both the baseline inflammatory status of the patient, surgical technique and experience, and the unique hormonal, immune and microbial tissue niche of the vagina. Mesh porosity, surface area and stiffness also might have an effect on the immune and tissue response to transvaginal mesh placement. Thus, a regulatory pathway is needed for mesh development that recognizes the roles of host and biological factors in driving the immune response to mesh, as well as mandatory mesh registries and the longitudinal surveillance of patients.


Assuntos
Materiais Biocompatíveis/efeitos adversos , Reação a Corpo Estranho/etiologia , Prolapso de Órgão Pélvico/cirurgia , Polipropilenos/efeitos adversos , Complicações Pós-Operatórias/etiologia , Telas Cirúrgicas/efeitos adversos , Incontinência Urinária por Estresse/cirurgia , Feminino , Reação a Corpo Estranho/imunologia , Reação a Corpo Estranho/prevenção & controle , Procedimentos Cirúrgicos em Ginecologia/efeitos adversos , Procedimentos Cirúrgicos em Ginecologia/instrumentação , Humanos , Complicações Pós-Operatórias/imunologia , Complicações Pós-Operatórias/prevenção & controle , Fatores de Risco , Procedimentos Cirúrgicos Urológicos/efeitos adversos , Procedimentos Cirúrgicos Urológicos/instrumentação
9.
Adv Sci (Weinh) ; 8(15): e2100231, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34085402

RESUMO

Brain-machine interfaces (BMIs) that link the brain to a machine are promising for the treatment of neurological disorders through the bi-directional translation of neural information over extended periods. However, the longevity of such implanted devices remains limited by the deterioration of their signal sensitivity over time due to acute inflammation from insertion trauma and chronic inflammation caused by the foreign body reaction. To address this challenge, a lubricated surface is fabricated to minimize friction during insertion and avoid immunogenicity during neural signal recording. Reduced friction force leads to 86% less impulse on the brain tissue, and thus immediately increases the number of measured signal electrodes by 102% upon insertion. Furthermore, the signal measurable period increases from 8 to 16 weeks due to the prevention of gliosis. By significantly reducing insertion damage and the foreign body reaction, the lubricated immune-stealthy probe surface (LIPS) can maximize the longevity of implantable BMIs.


Assuntos
Encéfalo/fisiologia , Eletrodos Implantados , Desenho de Equipamento/métodos , Processamento de Sinais Assistido por Computador , Ferimentos e Lesões/prevenção & controle , Animais , Interfaces Cérebro-Computador , Modelos Animais de Doenças , Reação a Corpo Estranho/prevenção & controle , Gliose/prevenção & controle , Lubrificação , Masculino , Camundongos , Camundongos Endogâmicos C57BL
10.
Front Immunol ; 12: 675538, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34054863

RESUMO

Tertiary lymphoid structures (TLS) are ectopically formed aggregates of organized lymphocytes and antigen-presenting cells that occur in solid tissues as part of a chronic inflammation response. Sharing structural and functional characteristics with conventional secondary lymphoid organs (SLO) including discrete T cell zones, B cell zones, marginal zones with antigen presenting cells, reticular stromal networks, and high endothelial venues (HEV), TLS are prominent centers of antigen presentation and adaptive immune activation within the periphery. TLS share many signaling axes and leukocyte recruitment schemes with SLO regarding their formation and function. In cancer, their presence confers positive prognostic value across a wide spectrum of indications, spurring interest in their artificial induction as either a new form of immunotherapy, or as a means to augment other cell or immunotherapies. Here, we review approaches for inducible (iTLS) that utilize chemokines, inflammatory factors, or cellular analogues vital to TLS formation and that often mirror conventional SLO organogenesis. This review also addresses biomaterials that have been or might be suitable for iTLS, and discusses remaining challenges facing iTLS manufacturing approaches for clinical translation.


Assuntos
Imunoterapia , Estruturas Linfoides Terciárias/imunologia , Colágeno/metabolismo , Reação a Corpo Estranho/prevenção & controle , Humanos , Hidrogéis , Receptor beta de Linfotoxina/fisiologia , Nanopartículas , Neoplasias/imunologia , Neoplasias/terapia , Estruturas Linfoides Terciárias/fisiopatologia
11.
J Biomed Mater Res B Appl Biomater ; 109(10): 1512-1524, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-33523550

RESUMO

Foreign Body Reaction (FBR) is a critical issue to be addressed when polyethylene terephthalate (PET) textile implants are considered in the medical field to treat pathologies involving hernia repair, revascularization strategies in arterial disease, and aneurysm or heart valve replacement. The natural porosity of textile materials tends to induce exaggerated tissue ingrowth which may prevent the implants from remaining flexible. The purpose of this study is to assess the influence of the textile topography of various woven substrates on the wetting properties of these substrates and on their in vitro interaction with mesenchymal stem cells (MSC) at 24 and 72 hr. The tests were performed both at yarn and fabric level under forced wetting and ingrowth conditions in order to replicate the mechanisms going on in vivo under blood pressure. Results demonstrate that cell proliferation is influenced by the textile wetting properties, which can be tuned at yarn and fabric level. In particular, it is shown that a satin weave obtained from porous spun yarn limits cell proliferation due to the high porosity of the yarn and the limited saturation index of the weave. Yarn and fabric saturation seems to play a predominant role in cell proliferation on textile substrates.


Assuntos
Materiais Biocompatíveis/química , Fibrose/metabolismo , Reação a Corpo Estranho/prevenção & controle , Próteses Valvulares Cardíacas , Polietilenotereftalatos/química , Tecidos Suporte/química , Adesão Celular , Proliferação de Células , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/metabolismo , Porosidade , Propriedades de Superfície , Têxteis , Engenharia Tecidual , Agentes Molhantes/química
12.
World Neurosurg ; 145: e141-e148, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33010510

RESUMO

OBJECTIVE: The aim of the study was to evaluate the effect of systemically administrated curcumin on the prevention of peridural fibrotic tissue and adhesion formation in a rat laminectomy model. METHODS: Thirty-two Wistar albino rats were randomly selected and equally divided into 4 groups as follows: negative control group (group I) did not undergo operation; positive control group (group II) underwent laminectomy without treatment; group III (low-dose curcumin; 100 mg/kg); and group IV (high-dose curcumin; 200 mg/kg). Curcumin was administered intraperitoneally per day for 7 days after surgery starting from day 0. Twenty-eight days after surgery, T12 and L4 vertebral columns, paraspinal tissues, and epidural scar tissue were dissected en bloc and prepared for histopathologic examinations. All specimens were examined for inflammation, epidural fibrosis (EF), foreign body reaction, medulla spinalis retraction, granulation tissue, and arachnoid involvement. A Kruskal-Wallis test followed by a Dunn multiple comparison test were used for statistical analysis, and a P value <0.05 was considered as statistically significant. RESULTS: Curcumin treatment significantly reduced inflammation, foreign body reaction, granulation tissue formation, medulla spinalis retraction, and EF formation compared with positive control group (P < 0.05); however, no significant differences were found between the 2 groups that received different doses of curcumin. CONCLUSIONS: The results of the present study showed that systemic administration of curcumin was effective in reducing EF formation, inflammation, granulation tissue formation, medulla spinalis retraction, and foreign body reaction in the laminectomy area. Our results suggest that antiinflammatory activities of curcumin are beneficial for attenuation of EF formation.


Assuntos
Espaço Epidural/patologia , Laminectomia/efeitos adversos , Meninges/patologia , Aderências Teciduais/etiologia , Animais , Anti-Inflamatórios não Esteroides/farmacologia , Curcumina/farmacologia , Modelos Animais de Doenças , Feminino , Fibrose/etiologia , Fibrose/prevenção & controle , Reação a Corpo Estranho/etiologia , Reação a Corpo Estranho/prevenção & controle , Inflamação/etiologia , Inflamação/prevenção & controle , Ratos , Ratos Wistar , Aderências Teciduais/patologia , Aderências Teciduais/prevenção & controle
13.
J Tissue Eng Regen Med ; 15(1): 24-36, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33217150

RESUMO

Implanted porous precision templated scaffolds (PTS) with 40-µm spherical pores reduce inflammation and foreign body reaction (FBR) while increasing vascular density upon implantation. Larger or smaller pores, however, promote chronic inflammation and FBR. While macrophage (MØ) recruitment and polarization participates in perpetuating this pore-size-mediated phenomenon, the driving mechanism of this unique pro-healing response is poorly characterized. We hypothesized that the primarily myeloid PTS resident cells release small extracellular vesicles (sEVs) that induce pore-size-dependent pro-healing effects in surrounding T cells. Upon profiling resident immune cells and their sEVs from explanted 40-µm- (pro-healing) and 100-µm-pore diameter (inflammatory) PTS, we found that PTS pore size did not affect PTS resident immune cell population ratios or the proportion of myeloid sEVs generated from explanted PTS. However, quantitative transcriptomic assessment indicated cell and sEV phenotype were pore size dependent. In vitro experiments demonstrated the ability of PTS cell-derived sEVs to stimulate T cells transcriptionally and proliferatively. Specifically, sEVs isolated from cells inhabiting explanted 100 µm PTS significantly upregulated Th1 inflammatory gene expression in immortalized T cells. sEVs isolated from cell inhabiting both 40- and 100-µm PTS upregulated essential Treg transcriptional markers in both primary and immortalized T cells. Finally, we investigated the effects of Treg depletion on explanted PTS resident cells. FoxP3+ cell depletion suggests Tregs play a unique role in balancing T cell subset ratios, thus driving host response in 40-µm PTS. These results indicate that predominantly 40-µm PTS myeloid cell-derived sEVs affect T cells through a distinct, pore-size-mediated modality.


Assuntos
Comunicação Celular/imunologia , Vesículas Extracelulares/imunologia , Macrófagos/imunologia , Linfócitos T Reguladores/imunologia , Células Th1/imunologia , Tecidos Suporte/química , Cicatrização/imunologia , Animais , Reação a Corpo Estranho/imunologia , Reação a Corpo Estranho/prevenção & controle , Camundongos , Camundongos Transgênicos , Porosidade
14.
Nat Commun ; 11(1): 6203, 2020 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-33277474

RESUMO

Biomaterials hold promise for therapeutic applications in the central nervous system (CNS). Little is known about molecular factors that determine CNS foreign body responses (FBRs) in vivo, or about how such responses influence biomaterial function. Here, we probed these factors in mice using a platform of injectable hydrogels readily modified to present interfaces with different physiochemical properties to host cells. We found that biomaterial FBRs mimic specialized multicellular CNS wound responses not present in peripheral tissues, which serve to isolate damaged neural tissue and restore barrier functions. We show that the nature and intensity of CNS FBRs are determined by definable properties that significantly influence hydrogel functions, including resorption and molecular delivery when injected into healthy brain or stroke injuries. Cationic interfaces elicit stromal cell infiltration, peripherally derived inflammation, neural damage and amyloid production. Nonionic and anionic formulations show minimal levels of these responses, which contributes to superior bioactive molecular delivery. Our results identify specific molecular mechanisms that drive FBRs in the CNS and have important implications for developing effective biomaterials for CNS applications.


Assuntos
Materiais Biocompatíveis/farmacologia , Sistema Nervoso Central/efeitos dos fármacos , Reação a Corpo Estranho/prevenção & controle , Hidrogéis/farmacologia , Animais , Materiais Biocompatíveis/química , Biomimética , Encéfalo/efeitos dos fármacos , Encéfalo/fisiologia , Encéfalo/fisiopatologia , Sistema Nervoso Central/patologia , Sistema Nervoso Central/fisiopatologia , Feminino , Humanos , Hidrogéis/química , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
15.
Biomaterials ; 255: 120162, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32562943

RESUMO

Transplantation technologies of pancreatic islets as well as stem cell-derived pancreatic beta cells encapsulated in hydrogel for the induction of immunoprotection could advance to treat type 1 diabetes mellitus, if the hydrogel transplants acquire retrievability through mitigating foreign body reactions after transplantation. Here, we demonstrate that the diameter of the fiber-shaped hydrogel transplants determines both in vivo cellular deposition onto themselves and their retrievability. Specifically, we found that the in vivo cellular deposition is significantly mitigated when the diameter is 1.0 mm and larger, and that 1.0 mm-thick xenoislet-laden fiber-shaped hydrogel transplants can be retrieved after being placed in the intraperitoneal cavities of immunocompetent diabetic mice for more than 100 days, during which period the hydrogel transplants can normalize the blood glucose concentrations of the mice. These findings could provide an innovative concept of a transplant that would promote the clinical application of stem cell-derived functional cells through improving their in vivo efficacy and safety.


Assuntos
Diabetes Mellitus Experimental , Transplante das Ilhotas Pancreáticas , Ilhotas Pancreáticas , Animais , Glicemia , Diabetes Mellitus Experimental/terapia , Reação a Corpo Estranho/prevenção & controle , Controle Glicêmico , Camundongos
16.
Adv Drug Deliv Rev ; 167: 109-120, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32553685

RESUMO

A broad range of medical devices initiate an immune reaction known as the foreign body response (FBR) upon implantation. Here, collagen deposition at the surface of the implant occurs as a result of the FBR, ultimately leading to fibrous encapsulation and, in many cases, reduced function or failure of the device. Despite significant efforts, the prevention of fibrotic encapsulation has not been realized at this point in time. However, many next-generation medical technologies including cellular therapies, sensors and devices depend on the ability to modulate and control the FBR. For these technologies to become viable, significant advances must be made in understanding the underlying mechanism of this response as well as in the methods modulating this response. In this review, we highlight recent advances in the development of materials and coatings providing a reduced FBR and emphasize key characteristics of high-performing approaches. We also provide a detailed overview of the state-of-the-art in strategies relying on controlled drug release, the surface display of bioactive signals, materials-based approaches, and combinations of these approaches. Finally, we offer perspectives on future directions in this field.


Assuntos
Materiais Biocompatíveis/química , Fibrose/prevenção & controle , Reação a Corpo Estranho/prevenção & controle , Próteses e Implantes , Animais , Preparações de Ação Retardada/química , Implantes de Medicamento/química , Humanos , Hydra/química , Mediadores da Inflamação/imunologia , Polímeros/química , Tecidos Suporte/química
17.
Nat Biomed Eng ; 4(8): 814-826, 2020 08.
Artigo em Inglês | MEDLINE | ID: mdl-32231313

RESUMO

The long-term function of transplanted therapeutic cells typically requires systemic immune suppression. Here, we show that a retrievable implant comprising a silicone reservoir and a porous polymeric membrane protects human cells encapsulated in it after implant transplantation in the intraperitoneal space of immunocompetent mice. Membranes with pores 1 µm in diameter allowed host macrophages to migrate into the device without the loss of transplanted cells, whereas membranes with pore sizes <0.8 µm prevented their infiltration by immune cells. A synthetic polymer coating prevented fibrosis and was necessary for the long-term function of the device. For >130 days, the device supported human cells engineered to secrete erythropoietin in immunocompetent mice, as well as transgenic human cells carrying an inducible gene circuit for the on-demand secretion of erythropoietin. Pancreatic islets from rats encapsulated in the device and implanted in diabetic mice restored normoglycaemia in the mice for over 75 days. The biocompatible device provides a retrievable solution for the transplantation of engineered cells in the absence of immunosuppression.


Assuntos
Transplante de Células/métodos , Sobrevivência de Enxerto , Próteses e Implantes , Animais , Cápsulas , Transplante de Células/instrumentação , Materiais Revestidos Biocompatíveis , Diabetes Mellitus Experimental/terapia , Desenho de Equipamento , Eritropoetina/genética , Eritropoetina/metabolismo , Reação a Corpo Estranho/prevenção & controle , Células HEK293 , Humanos , Ilhotas Pancreáticas , Transplante das Ilhotas Pancreáticas/instrumentação , Transplante das Ilhotas Pancreáticas/métodos , Camundongos , Permeabilidade , Ratos , Transplante Heterólogo
18.
Biomater Sci ; 8(6): 1580-1591, 2020 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-31932833

RESUMO

Implants based on silicone elastomers, polydimethylsiloxane (PDMS), have been widely used for breast augmentation and reconstruction, but excessive foreign body reactions around implants often cause serious side effects such as capsular contracture. In our previous study, we covalently grafted 2-methacryloyloxyethyl phosphorylcholine (MPC)-based polymers on the surface of PDMS blocks by UV-induced polymerization and showed effective reduction of capsular formation around the MPC-grafted PDMS in rats. In the present study, we examined the efficacy of heat-induced polymerization of MPC grafting on silicone breast implants intended for humans, and analyzed the in vivo inhibitory effect against capsular formation and inflammation in pigs, which are closely related to humans in terms of epidermal structures and fibrotic processes. The heat-induced polymerization provided a thicker MPC-grafted surface and was more effective than UV-induced polymerization for the grafting of complex shaped non-transparent implants. After 24-week implantation in the submuscular pockets of Yorkshire pigs, the heat-induced MPC-grafted breast implants showed 45% smaller capsular thickness and 20-30% lower levels of inflammatory markers such as myeloperoxidase (MPO), transforming growth factor-ß (TGF-ß), and α-smooth muscle actin (α-SMA) in surrounding tissues compared to non-grafted implants. This study provides important information for future clinical trials of MPC-grafted silicone implants.


Assuntos
Implantes de Mama/efeitos adversos , Dimetilpolisiloxanos/química , Reação a Corpo Estranho/prevenção & controle , Metacrilatos/química , Fosforilcolina/análogos & derivados , Animais , Modelos Animais de Doenças , Feminino , Temperatura Alta , Humanos , Fosforilcolina/química , Polimerização , Propriedades de Superfície , Suínos , Raios Ultravioleta
19.
Urolithiasis ; 48(1): 79-84, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30877315

RESUMO

Forgotten ureteral stents (FUS) is a great threat to both patients and doctors. Applications on smartphones can significantly reduce the incidence of FUS. But existing applications do not have instant notification and consultation functions. To implement those function, we developed a ureteral stent tracking system embedded in a social networking service application, WeChat. "Ureteral Stent Tracking System" was developed on WeChat, a social media application using by 1.4 million active users. The study consecutively enrolled patients who underwent ureteral stent installation from April 2018 to July 2018. Each patient's information was recorded on the smartphone by the urologists to create a document immediately after the surgery. The system sends notifications twice a week to both patients and clinicians via the message function of WeChat. A total of 183 patients were enrolled. The most senior patient enrolled was 73 years old. 156 (85.2%) patients underwent stent extraction before the scheduled time. 22 did not undergo stent extraction before the scheduled time because of urinary tract infection or stone residue. They underwent stent extraction within 1 month after the scheduled time. Two patients did not come to the hospital until we had made a phone call to them, though they had received notification from the online system. During the study, no patient was lost-to-follow up. In bilateral stents cases, no stent was forgotten after extraction surgery. A total of 85 (46.4%) patients consulted 132 issues in the system. 52 (39.4%) patients complained about hematuria. 36 (27.3%) patients reported lower urinary tract symptoms. All the consultations were answered within 24 h. "Ureteral Stent Tracking System" implement instant notification and consultation functions via WeChat. It helps urologists to manage indwelling ureteral stents and to reduce the incidence of FUS efficiently.


Assuntos
Aplicativos Móveis , Complicações Pós-Operatórias/prevenção & controle , Sistemas de Alerta/instrumentação , Stents/efeitos adversos , Cateterismo Urinário/instrumentação , Adulto , Idoso , Cateteres de Demora/efeitos adversos , Remoção de Dispositivo , Feminino , Reação a Corpo Estranho/etiologia , Reação a Corpo Estranho/prevenção & controle , Humanos , Doença Iatrogênica/prevenção & controle , Perda de Seguimento , Masculino , Pessoa de Meia-Idade , Complicações Pós-Operatórias/etiologia , Consulta Remota/instrumentação , Consulta Remota/métodos , Smartphone , Rede Social , Ureter/cirurgia , Cateterismo Urinário/efeitos adversos
20.
Adv Healthc Mater ; 9(3): e1901257, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31854130

RESUMO

Biomedical implant failure due to the host's response remains a challenging problem. In particular, the formation of the fibrous capsule is a common barrier for the normal function of implants. Currently, there is mounting evidence indicating that the polarization state of macrophages plays an important role in effecting the foreign body reaction (FBR). This opens up a potential avenue for improving host-implant integration. Here, electrospun poly(caprolactone-co-ethyl ethylene phosphate) nanofiber scaffolds are utilized to deliver microRNAs (miRs) to induce macrophage polarization and modulate FBR. Specifically, C57BL/6 mice that are treated with M2-inducing miRs, Let-7c and miR-124, display relatively thinner fibrous capsule formation around the scaffolds at both Week 2 and 4, as compared to treatment with M1-inducing miR, Anti-Let-7c. Histological analysis shows that the density of blood vessels in the scaffolds are the highest in miR-124 treatment group, followed by Anti-Let-7c and Let-7c treatment groups. Based on immunohistochemical quantifications, these miR-encapsulated nanofiber scaffolds are useful for localized and sustained delivery of functional miRs and are able to modulate macrophage polarization during the first 2 weeks of implantation to result in significant alteration in host-implant integration at longer time points.


Assuntos
Macrófagos/fisiologia , MicroRNAs/administração & dosagem , Nanofibras/química , Próteses e Implantes/efeitos adversos , Animais , Vasos Sanguíneos/crescimento & desenvolvimento , Feminino , Reação a Corpo Estranho/prevenção & controle , Técnicas de Transferência de Genes , Macrófagos/patologia , Camundongos Endogâmicos C57BL , MicroRNAs/genética , Organofosfatos/química , Poliésteres/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...